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Abstract We show (upper and lower) estimates for the integrals of poweredi-th
mean curvatures,i = 1, . . . ,n− 1, of compact and convex hypersurfaces, in terms
of the quermassintegrals of the correspondingC2

+-convex bodies. These bounds are
obtained as consequences of a most general result for functions defined on a general
probability space. Moreover, similar estimates for the integrals of powers of the
elementary symmetric functions of the radii of curvature ofC2

+-convex bodies are
proved. This probabilistic result will also allow to get new inequalities for the dual
quermaßintegrals of starshaped sets, via further estimates for the integrals of the
composition of a convex/concave function with the (powered) radial function.

1 Introduction

As usual in the literature we will writeRn for then-dimensional Euclidean space,
endowed with the standard inner product〈 ·, ·〉 and the Euclidean norm‖ · ‖.

Moreover,H k, 0 ≤ k ≤ n, will denote thek-dimensional Hausdorff measure
on Rn, and thus, ifM is a subset of ak-plane or ak-dimensional sphereSk, then
H k(M) coincides, respectively, with thek-dimensional Lebesgue measure ofM in
Rk or with thek-dimensional spherical Lebesgue measure inSk.

A classical isoperimetric type result in differential geometry of curves due to
Gage [6] states that ifγ : I −→R2 is a planar, regular, closed and convex curve with
curvaturek, lengthL and enclosing an areaA, then
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∫

γ
k2ds≥ π

L
A

. (1)

In [8] Green & Osher provided a general method in order to obtain inequalities of
the type ∫

γ
kmds≥ f (L,A),

i.e., lower bounds for the integral of powers of the curvature in terms of some re-
lation between the area and the length of the curve. In particular, Gage’s inequality
can also be derived with their method.

Moving now on to 2-dimensional surfaces inR3, there are two relevant curvatures
to consider: the Gauss curvatureκ and the mean curvatureH. Then, in the spirit
of (1), we find the famous Gauss-Bonnet theorem (see e.g. [5]) and the Willmore
theorem (see [14]). Gauss-Bonnet’s theorem shows that ifM ⊂ R3 is a compact
(smooth) surface which is homeomorphic to the sphere, then

∫

M
κ dH 2 ≥ 4π;

Willmore’s inequality states that for any compact (smooth) surfaceM ⊂ R3 having
curvatureH positive everywhere,

∫

M
H2dH 2 ≥ 4π.

The above inequalities have their analogues for compact hypersurfacesM ⊂Rn: the
Gauss-Bonnet theorem rewrites

∫

M
κ dH n−1 ≥ n|Bn|,

whereas Willmore’s inequality becomes
∫

M
Hn−1dH n−1 ≥ n|Bn|. (2)

Here| · | stands for the volume, i.e., the Lebesgue measure, andBn denotes the Eucli-
dean unit ball centered at the origin. Willmore’s inequality in an arbitrary dimension
was proved by Chen, see [3, 4]. In addition, Ros [11] proved that

∫

M

1
H

dH n−1 ≥ n|M|. (3)

Besides the major importance that these results have by themselves, they are specia-
lly interesting because they imply isoperimetric inequalities (see e.g. [10]).

Since a compact hypersurfaceM ⊂ Rn has associatedn−1 relevant curvatures,
the so-calledi-th mean curvaturesHi , i = 1, . . . ,n−1, the above results motivate the
following question:
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Main problem: To obtain (lower and/or upper) estimates for the integrals

∫

M
Hα

i dH n−1 and
∫

M

1
Hα

i
dH n−1

for α ≥ 0 and anyi = 1, . . . ,n− 1, as well as improvements of Chen’s and
Ros’ inequalities, in the convex case.

Next we introduce the notation and main concepts that will be needed throughout
the paper, as well as our main results.

2 Notation and previous results

Let K n
0 be the set of all convex bodies, i.e., compact convex sets with non-empty

interior, inRn containing the origin0. A convex bodyK ∈K n
0 is said to be of class

C2 if its boundary hypersurfacebdK is a regular submanifold ofRn, in the sense
of differential geometry, which is twice continuously differentiable. Moreover, we
say thatK is of classC2

+ if K is of classC2 and the Gauss mapνK : bdK −→ Sn−1,
mapping a boundary pointx ∈ bdK to the (unique) normal vector ofK at x, is a
diffeomorphism. Thus, in this case, we can consider then−1 principal curvatures
k1, . . . ,kn−1 of bdK and, as usual in the literature, we will denote by

Hi =
1(n−1
i

) ∑
1≤ j1<···< j i≤n−1

k j1 · · ·k j i , i = 1, . . . ,n−1,

the i-th mean curvature, settingH0 = 1. In particular,H1 = H is the classicalmean
curvatureandHn−1 = κ is theGauss-Kronecker curvature.

The pursued estimates for the integrals of poweredi-th mean curvatures will be
given in terms of the so-called quermaßintegrals of the convex bodies, which are
special geometric measures associated to the set. We define them next.

In [13], Steiner proved that givenK ∈ K n
0 and a non-negative real numberλ ,

the volume of the Minkowski sum (vectorial addition)K + λBn is expressed as a
polynomial of degreen in λ , namely,

|K +λBn|=
n

∑
i=0

(
n
i

)
Wi(K)λ i ,

which is called the (classical)Steiner formulaof K. The coefficientsWi(K) are the
quermaßintegralsof K, and they are a special case of the more general definedmixed
volumesfor which we refer to [12, Section 5.1]. In particular,W0(K) = |K| (the area
A(K) in the planar case),nW1(K) = S(K) is the surface area (the perimeterL(K) in
the plane) and2Wn−1/|Bn| is the mean width ofK. Moreover,Wn(K) = |Bn|.
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In order to state the main results of the paper, we need an additional definition.
Theouter radiusand theinner radiusof K ∈K n

0 are defined as the quantities

R̄(K) = min{R> 0 : K ⊆ RBn}= max
{‖x‖ : x∈ bdK

}
,

r̄(K) = max{r ≥ 0 : rBn ⊆ K}= min
{‖x‖ : x∈ bdK

}
.

Clearly, the valuēR(K)− r̄(K) is not translation invariant, but sinceK is compact,
there exists a (unique) pointcK ∈ K such that

R̄(K−cK)− r̄(K−cK) = min
{

R̄(K− t)− r̄(K− t) : t ∈ K
}

(see [2]). The pointcK is thecenter of the minimal ring, i.e., the uniquely determined
ring (closed set consisting of all points between two concentric balls) with minimal
difference of radii containingbdK. The valueωa(K) := R̄(K− cK)− r̄(K− cK) is
called thewidth of the minimal ringof K.

Fig. 1 The minimal ring of a
convex body. We observe that
the inner and the outer radii
of K− cK do not necessarily
coincide with the classical
inradius and circumradius of
the set, respectively.

cK

Sincer̄Bn ⊆ K andK ⊆ R̄Bn, the in- and outer radii and the quermaßintegrals
relate in the following way:

r̄(K)Wi+1(K)≤Wi(K)≤ R̄(K)Wi+1(K), (4)

i = 0, . . . ,n− 1, which is a direct consequence of the monotonicity of the mixed
volumes (cf. e.g. [12, p. 282]).

For the statement of the results, and in order to shorten the statements and proofs,
we introduce the following notation. For1≤ j ≤ n−1 and0≤ k≤ n−1, let

η j,k =





W1(K)W j(K)−W0(K)W j+1(K)
Wk+1(K)2ωa(K)

if K 6= rBn for all r > 0,

0 if K = rBn.

The non-negativity of the valuesη j,k is a direct consequence of the inequalities

Wi(K)W j(K)≥Wi−1(K)W j+1(K), 1≤ i ≤ j ≤ n−1, (5)

particular cases of the Aleksandrov-Fenchel inequality (see e.g. [12, Section 7.3]).
From now on, for the sake of brevity, we will writeWi = Wi(K), i = 0, . . . ,n, and
analogously for all other functionals, if the distinction of the body is not needed.
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2.1 Some previous results

In [1] the above mentioned problem of obtaining lower estimates for the integral
of poweredi-th mean curvatures was studied. Among others, the following more
general theorem was proved.

Theorem 1.LetK ∈K n
0 be of classC2

+. Then, for any convex functionF : I −→R,
I ⊆ R where all the quantities are defined, and alli = 0, . . . ,n−1,

∫

bdK
(F ◦Hi)dH n−1 ≥ nW1

F
(

Wi+1
W1

+ηi,0

)
+F

(
Wi+1
W1

−ηi,0

)

2
,

∫

bdK

(
F ◦ 1

Hi

)
Hi dH n−1 ≥ nWi+1

F
(

W1
Wi+1

+ηi,i

)
+F

(
W1

Wi+1
−ηi,i

)

2
.

Equality holds in both inequalities ifK = Bn (up to dilations).

Indeed, a slightly more general result was obtained (see [1, Theorem 3.2]).
Then, applying Theorem 1 to the convex functionsF(x) = xα+1 or F(x) = 1/xα ,

α ≥ 0, two different results can be obtained, providing different bounds for the
same integrals. These bounds can be compared, and thus the following theorem is
obtained in the spirit of themain problem:

Theorem 2.LetK ∈K n
0 be of classC2

+. Then, for anyα ≥ 0 and all i = 0, . . . ,n−1,

∫

bdK
Hα+1

i dH n−1 ≥ n
2

[
Wα+1

i+1(
W1 +Wi+1ηi,i

)α +
Wα+1

i+1(
W1−Wi+1ηi,i

)α

]
,

∫

bdK

1
Hα

i
dH n−1 ≥ n

2

[
Wα+1

1(
Wi+1 +W1ηi,0

)α +
Wα+1

1(
Wi+1−W1ηi,0

)α

]
.

Equality holds in both inequalities ifK = Bn (up to dilations).

In particular, improvements of Chen’s and Ros’ estimates for convex hypersurfa-
ces can be obtained by just takingi = 1 and, respectively,α = 1 or α = n−2:

Corollary 1. LetK ∈K n
0 be of classC2

+. Then,

∫

bdK
Hn−1dH n−1 ≥ n

2

[
Wn−1

2(
W1 +W2η1,1

)n−2 +
Wn−1

2(
W1−W2η1,1

)n−2

]
,

∫

bdK

1
H

dH n−1 ≥ n
W2

1W2

W2
2−W2

1η2
1,0

.

Equality holds in all inequalities ifK = Bn (up to dilations).
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Indeed, on the one hand,

n
W2

1W2

W2
2−W2

1η2
1,0

≥ n
W2

1W2

W2
2

= n
W2

1

W2
≥ nW0 = n|K|

because of the Aleksandrov-Fenchel inequality (5) fori = j = 1. On the other hand,
since the function1/xn−2 is convex, then

n
2

[
Wn−1

2(
W1 +W2η1,1

)n−2 +
Wn−1

2(
W1−W2η1,1

)n−2

]
≥ n

2
2Wn−1

2

Wn−2
1

≥ n|Bn|,

where the last inequality follows from the known relations

Wk−i
j ≥Wk− j

i W j−i
k for 0≤ i < j < k≤ n, (6)

which are also consequences of the Aleksandrov-Fenchel inequality (see e.g. [12,
(7.66)]). Hence, Corollary 1 improves (2) and (3) in the convex case.

We notice that the Theorem 2 provides lower estimates for the integral ofalmost
any power of thei-th mean curvatures: bounds for

∫
bdK Hλ

i dH n−1 are givenfor any
λ ∈ (−∞,0]∪ [1,+∞); the range(0,1) is still an open question.

In this work we consider the opposite case, i.e., we will look for upper bounds
for the integrals of poweredi-th mean curvatures.

3 A probabilistic type result

All the results will be consequences of a very general proposition for functions defi-
ned on a general probability space. In [1, Proposition 1.4], this result was proved for
a convex functionF , whereas now we are interested in the concave case. Although
this one can be obtained from the convex case just taking−F , for completeness, we
include here the proof.

As usual in the literature,

Eρ =
∫

Ω
ρ(ω)dP(ω)

will denote the expectation ofρ, Cov(ρ,h) = Ehρ−EhEρ the covariance ofρ and
h, and‖ · ‖∞ the sup-norm, i.e.,‖ f‖∞ = sup

{| f (ω)| : ω ∈Ω
}

.

Proposition 1. Let (Ω ,P) be a probability space such that, for anyA⊆Ω and any
0≤ p≤ P(A), there existsB⊆A withP(B) = p. Letρ ,h : Ω −→R, with ρ ∈ L1(Ω)
and h ∈ L∞(Ω). Then, for any concave functionF : I −→ R, I ⊆ R where all the
expressions below are defined, we have

E(F ◦ρ)≤
F

(
Eρ + Cov(ρ,h)

‖h−Eh‖∞

)
+F

(
Eρ− Cov(ρ,h)

‖h−Eh‖∞

)

2
.



Estimates for the integrals of poweredi-th mean curvatures 7

Proof. Without loss of generality we assume thatCov(ρ,h)≤ 0; otherwise we just
changeh by−h.

Let mbe a median ofρ, i.e., a value for which both

P
({

ω ∈Ω : ρ(ω)≥m
})≥ 1/2 and P

({
ω ∈Ω : ρ(ω)≤m

})≥ 1/2,

and letΩ1 ⊂Ω andΩ2 = Ω\Ω1 be such thatP(Ω1) = P(Ω2) = 1/2 and
{

ω ∈Ω : ρ(ω) > m
} ⊆ Ω1 ⊆

{
ω ∈Ω : ρ(ω)≥m

}
,{

ω ∈Ω : ρ(ω) < m
} ⊆ Ω2 ⊆

{
ω ∈Ω : ρ(ω)≤m

}
.

We notice that suchΩ1 always exists. Indeed, by the definition of median,

P
({

ω ∈Ω : ρ(ω)≤m
})
≥ 1

2
,

and so

P
({

ω ∈Ω : ρ(ω) > m
})
≤ 1

2
.

Consequently, since

P
({

ω ∈Ω : ρ(ω)≥m
})

= P
({

ω ∈Ω : ρ(ω) > m
})

+P
({

ω ∈Ω : ρ(ω) = m
})
≥ 1

2
,

we have that

P
({

ω ∈Ω : ρ(ω) = m
})
≥ 1

2
−P

({
ω ∈Ω : ρ(ω) > m

})
≥ 0.

Then, by our assumptions on(Ω ,P), there exists a subsetB⊆ {
ω ∈Ω : ρ(ω) = m

}
with P(B) = 1/2−P{

ω ∈Ω : ρ(ω) > m
}

and we can take

Ω1 =
{

ω ∈Ω : ρ(ω) > m
}∪B.

Now, let

ρ1 = 2
∫

Ω1

ρ(ω)dP(ω) and ρ2 = 2
∫

Ω2

ρ(ω)dP(ω).

Sinceρ1 +ρ2 = 2Eρ, we can write

ρ1 = Eρ +b and ρ2 = Eρ−b (7)

for someb≥ 0. First, we are going to prove that
∣∣Cov(ρ ,h)

∣∣
‖h−Eh‖∞

≤ b. (8)
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Indeed, since
−‖h−Eh‖∞ ≤ Eh−h(ω)≤ ‖h−Eh‖∞

for everyω ∈Ω and sinceρ(ω)≥m if ω ∈Ω1 andρ(ω)≤m if ω ∈Ω2, then we
have that

∫

Ω1

(
Eh−h(ω)

)(
ρ(ω)−m

)
dP(ω)≤ 1

2
‖h−Eh‖∞(ρ1−m)

and ∫

Ω2

(
Eh−h(ω)

)(
ρ(ω)−m

)
dP(ω)≤−1

2
‖h−Eh‖∞(ρ2−m).

Adding both integrals and using (7) we get

E
(
(Eh−h)(ρ−m)

)
=

∫

Ω

(
Eh−h(ω)

)(
ρ(ω)−m

)
dP(ω)

≤ 1
2
‖h−Eh‖∞(ρ1−ρ2) = ‖h−Eh‖∞b,

and since
E

(
(Eh−h)(ρ−m)

)
= EhEρ−Ehρ =−Cov(ρ,h),

we obtain the required bound (8).
Now, sinceF is concave, Jensen’s inequality (see e.g. [12, p. 20]) yields

F(ρ1)≥ 2
∫

Ω1

(F ◦ρ)(ω)dP(ω) and F(ρ2)≥ 2
∫

Ω2

(F ◦ρ)(ω)dP(ω),

which, together with (7) implies that

E(F ◦ρ) =
∫

Ω1

(F ◦ρ)(ω)dP(ω)+
∫

Ω2

(F ◦ρ)(ω)dP(ω)

≤ F(ρ1)+F(ρ2)
2

=
F(Eρ +b)+F(Eρ−b)

2
.

Finally, since a concave functionF satisfies that for anyx∈ R and any0≤ a≤ b
the average of the numbers

{
F(x+a),F(x−a)

}
is not smaller than the average of{

F(x+b),F(x−b)
}

, taking into account (8) we get

E(F ◦ρ)≤ F(Eρ +b)+F(Eρ−b)
2

≤
F

(
Eρ + Cov(ρ,h)

‖h−Eh‖∞

)
+F

(
Eρ− Cov(ρ,h)

‖h−Eh‖∞

)

2
,

which conclude the proof. ut
If the probability measure can be expressed by means of a density with respect

to another (not necessarily a probability) measureµ , we immediately obtain the
following result.
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Proposition 2. Let (Ω ,µ) be a measure space and letg : Ω −→ R be a positive
integrable function with

∫
Ω gdµ = 1, and such that for anyA⊆ Ω and any0≤

p≤ ∫
Agdµ , there existsB⊆ A with

∫
Bgdµ = p. Let ρ,h : Ω −→ R be integrable

functions withh∈ L∞(Ω). Then, for any concave functionF : I −→R, I ⊆R where
all the expressions below are defined, we have

∫

Ω
(F ◦ρ)gdµ ≤

F

(∫

Ω
ρgdµ +η(ρ ,h,g)

)
+F

(∫

Ω
ρgdµ−η(ρ,h,g)

)

2
,

where

η(ρ ,h,g) =
∫

Ω ρhgdµ− (
∫

Ω ρgdµ)(
∫

Ω hgdµ)
‖h− ∫

Ω hgdµ‖∞
.

4 Upper bounds for integrals of poweredi-th mean curvatures

We denote byhK(u) = supx∈K 〈x,u〉, u∈Rn, the support function ofK (see e.g. [12,
Section 1.7]), and let

qK(x) = hK
(
νK(x)

)
=

〈
x,νK(x)

〉
, x∈ bdK.

Minkowskian integral formulae (see e.g. [12, pp. 296–297]) state that

Wi =
1
n

∫

bdK
Hi−1dH n−1 =

1
n

∫

bdK
qKHi dH n−1 (9)

for i = 1, . . . ,n. We observe that the volume

|K|= W0 =
1
n

∫

bdK
qKH0dH n−1 =

1
n

∫

bdK
qK dH n−1.

This section is devoted to look for upper bounds for the integrals of some po-
wers of thei-th mean curvatures. First we show the following general result for an
arbitrary concave function.

Theorem 3.Let K ∈ K n
0 be of classC2

+. For any concave functionF : I −→ R,
I ⊆ R where all the quantities are defined, and alli = 0, . . . ,n−1,

∫

bdK
(F ◦Hi)dH n−1 ≤ nW1

F
(

Wi+1
W1

+ηi,0

)
+F

(
Wi+1
W1

−ηi,0

)

2
, (10)

∫

bdK

(
F ◦ 1

Hi

)
Hi dH n−1 ≤ nWi+1

F
(

W1
Wi+1

+ηi,i

)
+F

(
W1

Wi+1
−ηi,i

)

2
. (11)

Equality holds in both inequalities ifK = Bn (up to dilations).
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Proof. In order to get (10), we consider the probability space
(
bdK,H n−1/(nW1)

)
and apply Proposition 1 to the functionsρ = Hi andh = qK . Then, using the identi-
ties in (9), we get

Eρ =
Wi+1

W1
, Eh =

W0

W1

and

Cov(ρ,h) = Ehρ−EhEρ =
WiW1−W0Wi+1

W2
1

.

Moreover,

‖h−Eh‖∞ = sup

{∣∣∣∣qK(x)− W0

W1

∣∣∣∣ : x∈ bdK

}
= max

{
R̄− W0

W1
,
W0

W1
− r̄

}
,

and since the functionalsH j ,W j are translation invariant, the smallest possible up-
per bound for

∫
bdK(F ◦Hi)dH n−1 will be obtained for the translation ofK such

that the above maximum is minimal. Therefore, we can write

∫

bdK
(F ◦Hi)dH n−1 ≤ nW1

F
(

Wi+1
W1

+η
)

+F
(

Wi+1
W1

−η
)

2
,

with

δ =
Cov(ρ ,h)
‖h−Eh‖∞

=
WiW1−W0Wi+1

W2
1min

x∈K
max

{
R̄(K−x)− W0

W1
,
W0

W1
− r̄(K−x)

} .

Now we observe that, by (4),

R̄(K−x)− W0

W1
≤ R̄(K−x)− r̄(K−x), and

W0

W1
− r̄(K−x) ≤ R̄(K−x)− r̄(K−x),

and sinceF is a concave function, we can replaceδ by a smaller number, namely,

δ ≥ WiW1−W0Wi+1

W2
1min

x∈K

{
R̄(K−x)− r̄(K−x)

} =
WiW1−W0Wi+1

W2
1ωa

= ηi,0.

Altogether we get (10).
Inequality (11) is obtained analogously, but now as a consequence of Pro-

position 2 for ρ = 1/Hi , h = qK and g = Hi/(nWi+1); we notice that, by (9),∫
bdK gdH n−1 = 1.

Finally, equality trivially holds forK = Bn (up to dilations) just noticing that
Wi(Bn) = |Bn| for all i = 0, . . . ,n. ut

In order to get bounds for the integral of some powers of the mean curvatures,
we may apply Theorem 3 to the concave functionF(x) = xα for 0≤ α ≤ 1.
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Theorem 4.LetK ∈K n
0 be of classC2

+. Then, for alli = 0, . . . ,n−1, the following
inequalities hold:

• If 0≤ α ≤ 1/2,
∫

bdK
Hα

i dH n−1 ≤ n
2

W1−α
1

[(
Wi+1 +W1 ηi,0

)α +
(
Wi+1−W1 ηi,0

)α
]
. (12)

• If 1/2≤ α ≤ 1,
∫

bdK
Hα

i dH n−1≤ n
2

Wα
i+1

[(
W1+Wi+1 ηi,i

)1−α +
(
W1−Wi+1 ηi,i

)1−α
]
. (13)

Equality holds in both inequalities ifK = Bn (up to dilations).

Proof. Let 0≤ α ≤ 1. On the one hand, takingF(x) = xα in (10) we directly get
∫

bdK
Hα

i dH n−1 ≤ n
2

W1−α
1

[(
Wi+1 +W1 ηi,0

)α +
(
Wi+1−W1 ηi,0

)α
]
. (14)

On the other hand, (11) applied toF(x) = xα yields
∫

bdK
H1−α

i dH n−1 ≤ n
2

W1−α
i+1

[(
W1 +Wi+1 ηi,i

)α +
(
W1−Wi+1 ηi,i

)α
]

or, equivalently,
∫

bdK
Hα

i dH n−1 ≤ n
2

Wα
i+1

[(
W1 +Wi+1 ηi,i

)1−α +
(
W1−Wi+1 ηi,i

)1−α
]
. (15)

Therefore, we just have to compare both bounds, depending on the value ofα. In
order to do it, we denote by

x =
W1

Wi+1
ηi,0 =

Wi+1

W1
ηi,i =

W1Wi −W0Wi+1

W1Wi+1ωa
.

Using (4) and (5) we get that

0≤W1Wi −W0Wi+1 ≤W1Wi+1
(
R̄(K−cK)− r̄(K−cK)

)
= W1Wi+1ωa,

and therefore,0≤ x≤ 1. Using this notation, the upper bounds in (14) and (15) can
be written, respectively, as

W1−α
1 Wα

i+1

[
(1+x)α +(1−x)α]

=: (b1),

W1−α
1 Wα

i+1

[
(1+x)1−α +(1−x)1−α]

=: (b2).

Then (b1) is, say, smaller than (b2), if and only if

(1+x)α +(1−x)α ≤ (1+x)1−α +(1−x)1−α , (16)
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and it clearly holds whenα ≤ 1/2. This shows (12). Finally, (b1)≥ (b2) is equi-
valent to have the reverse inequality in (16), which holds ifα ≥ 1/2. It states (13)
concludes the proof of the theorem. ut

It may also have interest to obtain an estimate for the entropy of thei-th mean
curvatures, which is defined by

−
∫

bdK
Hi logHi dH n−1.

We do it in the following result.

Corollary 2. LetK ∈K n
0 be of classC2

+. For all i = 0, . . . ,n−1,

−
∫

bdK
Hi logHi dH n−1 ≤ n

2
Wi+1 log

(
W2

1

W2
i+1

−η2
i,i

)
.

Equality holds ifK = Bn (up to dilations).

Proof. It is a direct consequence of inequality (11), just considering the concave
functionF(x) = logx:

−
∫

bdK
Hi logHi dH n−1 =

∫

bdK
Hi log

1
Hi

dH n−1 ≤ n
2

Wi+1 log

(
W2

1

W2
i+1

−η2
i,i

)
.ut

4.1 On the radii of curvature of convex bodies

If K ∈ K n
0 is of classC2

+, we can consider then− 1 principal radii of curvature
r1, . . . , rn−1 of K at u ∈ Sn−1, i.e., the eigenvalues of the reverse Weingarten map
(see e.g. [12, p. 116] for a detailed explanation). Then, fori = 1, . . . ,n−1,

si =
1(n−1
i

) ∑
1≤ j1<···< j i≤n−1

r j1 · · · r j i

is the i-th normalized elementary symmetric function of the principal radii of cur-
vature, withs0 = 1. We observe that, properly ordering the indices,

r i(u) =
1

ki
(
xK(u)

) , i = 1, . . . ,n−1,

wherexK(u) ∈ bdK is the unique point of the boundary at whichu is the outer
normal vector. Moreover, for allu∈ Sn−1 andx∈ bdK we have the relations

si(u) =
Hn−i−1

Hn−1

(
xK(u)

)
and Hi(x) =

sn−i−1

sn−1

(
νK(x)

)
,
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and so there exist also Minkowskian integral formulae for thesi ’s (see e.g. [12,
pp. 296–297]): for alli = 0, . . . ,n−1,

Wi =
1
n

∫

Sn−1
sn−i dH n−1 =

1
n

∫

Sn−1
hKsn−i−1dH n−1. (17)

In [1] the analogous result to Theorem 1 for the so-calledi-th (normalized) elemen-
tary symmetric function of the principal radii of curvature was obtained. In a similar
way we can also get the corresponding result for a concave function, which will
provide upper bounds for the integrals of some powers of thesi ’s.

Theorem 5.Let K ∈ K n
0 be of classC2

+. For any concave functionF : I −→ R,
I ⊆ R where all the quantities are defined, and alli = 0, . . . ,n−1,

∫

Sn−1
(F ◦si)dH n−1 ≤ n|Bn|

F
(

Wn−i
|Bn| + η̄i,1

)
+F

(
Wn−i
|Bn| − η̄i,1

)

2
,

∫

Sn−1

(
F ◦ 1

si

)
si dH n−1 ≤ nWn−i

F
( |Bn|

Wn−i
+ η̄i,i+1

)
+F

( |Bn|
Wn−i

− η̄i,i+1

)

2
,

where now, for any0≤ j,k≤ n,

η̄ j,k =





Wn− jWn−1−Wn− j−1|Bn|
W2

n−k+1ωa
if K 6= rBn for all r > 0,

0 if K = rBn.

Equality holds in both inequalities ifK = Bn (up to dilations).

Proof. In order to get the first inequality we apply Proposition 1 to the probability
space

(
Sn−1,H n−1/(n|Bn|)

)
and to the functionsρ = si andh = hK . Then, using

the Minkowski integral formula (17), we get

Eρ =
Wn−i

|Bn| , Eh =
Wn−1

|Bn|
and

Cov(ρ,h) =
Wn−i−1|Bn|−Wn−iWn−1

|Bn|2 .

In addition,

‖h−Eh‖∞ = sup

{∣∣∣∣hK(u)− Wn−1

|Bn|

∣∣∣∣ : u∈ Sn−1
}

= max

{
R̄− Wn−1

|Bn| ,
Wn−1

|Bn| − r̄

}
,

and since the functionalssj ,W j are translation invariant, the smallest possible upper
bound for

∫
bdK(F ◦si)dH n−1 will be obtained for the translation ofK such that the

above maximum is minimal.
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Moreover, using (4) we have

Cov(ρ,h)
‖h−Eh‖∞

=
Wn−i−1|Bn|−Wn−iWn−1

|Bn|2min
x∈K

max

{
R̄(K−x)− Wn−1

|Bn| ,
Wn−1

|Bn| − r̄(K−x)
}

≥ Wn−i−1|Bn|−Wn−iWn−1

|Bn|2min
x∈K

{
R̄(K−x)− r̄(K−x)

} =
Wn−i−1|Bn|−Wn−iWn−1

|Bn|2ωa
=−η̄i,1.

Altogether and the concavity ofF show the first inequality.
Second inequality is obtained analogously, but now as a consequence of Pro-

position 2 for ρ = 1/si , h = hK and g = si/(nWn−i); we notice that, by (17),∫
Sn−1 gdH n−1 = 1. The equality case is trivial. ut

If we replaceF(x) by the concave functionxα , 0≤ α ≤ 1, we get the correspon-
ding result to Theorem 4 for thesi ’s.

Theorem 6.LetK ∈K n
0 be of classC2

+. Then, for alli = 0, . . . ,n−1, the following
inequalities hold:

• If 0≤ α ≤ 1/2,
∫

Sn−1
sα
i dH n−1 ≤ n

2
|Bn|1−α

(
Wn−i + |Bn|η̄i,1

)α
+

(
Wn−i −|Bn|η̄i,1

)α
.

• If 1/2≤ α ≤ 1,
∫

Sn−1
sα
i dH n−1 ≤ n

2
Wα

n−i

[(|Bn|+Wn−i η̄i,i+1
)1−α +

(|Bn|−Wn−i ηi,i+1
)1−α

]
.

Equality holds in both inequalities ifK = Bn (up to dilations).

5 Another consequence: the radial function and the dual
quermaßintegrals

In this section we will apply Proposition 1 in a difference setting: instead of working
with convex bodies we will consider the so-called starshaped sets. A non-empty set
S⊂Rn is calledstarshaped(with respect to the origin) if the line segment[0,x]⊆ S
for all x∈ S. For a compact starshaped setK, the radial function is defined as

ρK(u) = max
{

λ ≥ 0 : λu∈ K
}
, u∈ Rn\{0}.

Clearly,ρK(u)u∈ bdK. We will denote byS n
0 the family of all compact starshaped

sets inRn having the origin as an interior point.
Closely related to the radial function are dual quermaßintegrals (and dual mixed

volumes), which were introduced by Lutwak in [9]; they were the starting point for
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the development of the nowadays known as dual Brunn-Minkowski theory (see e.g.
[12, Section 9.3]). ForK ∈S n

0 andi = 0, . . . ,n, thedual quermaßintegral of order
n− i, W̃n−i(K), is defined by

W̃n−i(K) =
1
n

∫

Sn−1
ρ i

K dH n−1. (18)

The functionalW̃n−i is non-negative, monotonous and homogeneous of degreei (see
e.g. [7, Section A.7]), although it is not translation invariant. In particular, the use of
spherical coordinates immediately yieldsW̃0(K) = |K|, whereas̃Wn(K) = |Bn| and
2W̃n−1(K)/|Bn| is the average length of chords ofK through the origin. Moreover,
if K ∈K n

0 thenW̃i(K)≤Wi(K) for all i = 0, . . . ,n (see [9]).
For K ∈S n

0 , its in- and outer radii,̄r(K), R̄(K), are defined analogously to the
convex case, and from the already mentioned monotonicity of the dual quermaßin-
tegrals we get (cf. (4))

r̄(K)n− j W̃n− j+k(K)≤ W̃k(K)≤ R̄n− j(K)W̃n− j+k(K). (19)

We observe that definition (18) can be extended to any real number, and thus, in
contrast to the case of the classical quermaßintegrals, dual quermaßintegrals can be
defined for anyi ∈ R. Now, thedual Aleksandrov-Fenchel inequalities(see e.g. [9,
Theorem 2]) read (cf. (6))

W̃ j(K)k−i ≤ W̃i(K)k− jW̃k(K) j−i , for i ≤ j ≤ k. (20)

In [1], a slightly stronger version of the following result was obtained. Again, for
the sake of brevity, we will writẽWi = W̃i(K).

Theorem 7.Let K ∈S n
0 . For any convex functionF : I −→ R, I ⊆ R where all the

quantities are defined, and alli = 0, . . . ,n,

∫

Sn−1

(
F ◦ρ i

K

)
dH n−1 ≥ n|Bn|

F
(

W̃n−i
|Bn| + η̃i,0

)
+F

(
W̃n−i
|Bn| − η̃i,0

)

2
, (21)

∫

Sn−1

(
F ◦ 1

ρ i
K

)
ρ i

K dH n−1 ≥ nW̃n−i

F
( |Bn|

W̃n−i
+ η̃i,i

)
+F

( |Bn|
W̃n−i

− η̃i,i

)

2
,

where now, for any0≤ j,k≤ n,

η̃ j,k =
|K||Bn|−W̃n− jW̃ j

W̃2
n−k

(
R̄n− j − r̄n− j

) if K 6= rBn, r > 0,

η̃ j,k = 0 if K = rBn for somer > 0.

Equality holds in both inequalities ifK = Bn (up to dilations).
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We observe that the relation|K||Bn
2| ≥ W̃n− jW̃ j , a consequence of the dual

Aleksandrov-Fenchel inequality (20), ensures thatη̃ j,k ≥ 0.
Following the same argument as in the proof of the above theorem, we obtain the

corresponding result for the case of a concave function.

Theorem 8.LetK ∈S n
0 . For any concave functionF : I −→R, I ⊆R where all the

quantities are defined, and alli = 0, . . . ,n,

∫

Sn−1

(
F ◦ρ i

K

)
dH n−1 ≤ n|Bn|

F
(

W̃n−i
|Bn| + η̃i,0

)
+F

(
W̃n−i
|Bn| − η̃i,0

)

2
, (22)

∫

Sn−1

(
F ◦ 1

ρ i
K

)
ρ i

K dH n−1 ≤ nW̃n−i

F
( |Bn|

W̃n−i
+ η̃i,i

)
+F

( |Bn|
W̃n−i

− η̃i,i

)

2
.

Equality holds in both inequalities ifK = Bn (up to dilations).

Proof. In order to prove (22) we apply Proposition 1 to the probability space(
Sn−1,H n−1/(n|Bn|)

)
and the functionsρ = ρ i

K andh = ρn−i
K . Then, using (18),

Eρ = W̃n−i/|Bn|, Eh = W̃i/|Bn| and

Cov(ρ ,h) =
|K||Bn|−W̃n−iW̃i

|Bn|2 .

Moreover, sinceρK(u)u∈ bdK, the relations (19) yield

‖h−Eh‖∞ = sup

{∣∣∣∣∣ρK(u)n−i − W̃i

|Bn|

∣∣∣∣∣ : u∈ Sn−1

}

= max

{
R̄n−i − W̃i

|Bn| ,
W̃i

|Bn| − r̄n−i

}
≥ R̄n−i − r̄n−i .

Altogether and the concavity ofF shows the first inequality.
Second inequality is obtained analogously, but now as a consequence of Proposi-

tion 2 forρ = 1/ρ i
K , h= ρn−i

K andg= ρ i
K/(nW̃n−i). The equality case is trivial.ut

We observe that since (18) can be defined for anyi ∈ R, taking F(x) = xα or
F(x) = 1/xα for suitable powersα ≥ 0, new inequalities relating the dual quer-
maßintegrals with the in- and outer radii can be obtained. Indeed, even Theorems 7
and 8 hold true for alli ∈ R, just properly defining the values̃η j,k.

For instance, takingF(x) = x2 in (21), then
∫

Sn−1

(
F ◦ρ i

K

)
dH n−1 =

∫

Sn−1
ρ2i

K dH n−1 = nW̃n−2i

for any i = 0, . . . ,n, and hence we get

|Bn|2
(
|Bn|W̃n−2i −W̃2

n−i

)(
R̄n−i − r̄n−i)2 ≥ (|K||Bn|−W̃n−iW̃i

)2
,



Estimates for the integrals of poweredi-th mean curvatures 17

with equality for the ball.
If we consider now the concave functionF(x) =

√
x and apply (22), we obtain

2W̃2
n−i/2 ≤ |Bn|W̃n−i +

√√√√|Bn|2W̃2
n−i −

(|K||Bn|−W̃n−iW̃i
)2

(
R̄n−i − r̄n−i

) ;

here we are assuming thatK 6= rBn, otherwise we get a trivial identity.
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References
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