Estimates for the integrals of powered-th mean
curvatures

M. A. Hernandez Cifre and D. Alonso-G@tirez

Abstract We show (upper and lower) estimates for the integrals of powitkd

mean curvatures,= 1,....,n— 1, of compact and convex hypersurfaces, in terms

of the quermassintegrals of the correspondhigconvex bodies. These bounds are
obtained as consequences of a most general result for functions defined on a general
probability space. Moreover, similar estimates for the integrals of powers of the
elementary symmetric functions of the radii of curvatur&Cdfconvex bodies are
proved. This probabilistic result will also allow to get new inequalities for the dual
quermalintegrals of starshaped sets, via further estimates for the integrals of the
composition of a convex/concave function with the (powered) radial function.

1 Introduction

As usual in the literature we will writ®" for the n-dimensional Euclidean space,
endowed with the standard inner prodyct) and the Euclidean nortj- ||.
Moreover, ¥, 0 < k < n, will denote thek-dimensional Hausdorff measure
onR", and thus, ifM is a subset of &-plane or ak-dimensional sphergX, then
#%(M) coincides, respectively, with thedimensional Lebesgue measureMbin
RK or with thek-dimensional spherical Lebesgue measut&in
A classical isoperimetric type result in differential geometry of curves due to
Gage [6] states that if: | — R? is a planar, regular, closed and convex curve with
curvaturek, lengthL and enclosing an aref®, then

Maria A. Herraindez Cifre
Departamento de Mateaticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia,
Spain, e-mail: mhcifre@um.es

David Alonso-Guterrez
Departamento de Matéaticas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009-Zaragoza,
Spain e-mail: alonsod@unizar.es



2 M. A. Hernandez Cifre and D. Alonso-Gétirez

: L
k2ds > rr—. 1
/y ds> 1 1)
In [8] Green & Osher provided a general method in order to obtain inequalities of
the type

/kmdsz F(L,A),
y

i.e., lower bounds for the integral of powers of the curvature in terms of some re-
lation between the area and the length of the curve. In particular, Gage's inequality
can also be derived with their method.

Moving now on to 2-dimensional surfacesRs, there are two relevant curvatures
to consider: the Gauss curvatukeand the mean curvatute. Then, in the spirit
of (1), we find the famous Gauss-Bonnet theorem (see e.g. [5]) and the Willmore
theorem (see [14]). Gauss-Bonnet’s theorem shows thdt if R® is a compact
(smooth) surface which is homeomorphic to the sphere, then

/Kd%224n‘,
M

Willmore’s inequality states that for any compact (smooth) surfdce R® having
curvatureH positive everywhere,

/ H2d72 > AT
M

The above inequalities have their analogues for compact hypersuMace®": the
Gauss-Bonnet theorem rewrites

/ Kd" 1> n|By|,
M
whereas Willmore's inequality becomes
/ H1d7™ 1 > n|By|. @)
M

Here|- | stands for the volume, i.e., the Lebesgue measureBaddnotes the Eucli-
dean unit ball centered at the origin. Willmore’s inequality in an arbitrary dimension
was proved by Chen, see [3, 4]. In addition, Ros [11] proved that

/M %d%nfl > n[M|. 3)

Besides the major importance that these results have by themselves, they are specia-
lly interesting because they imply isoperimetric inequalities (see e.g. [10]).

Since a compact hypersurfabeC R" has associated— 1 relevant curvatures,
the so-called-th mean curvaturdd;, i = 1,...,n— 1, the above results motivate the
following question:



Estimates for the integrals of powereth mean curvatures 3

Main problem: To obtain (lower and/or upper) estimates for the integrals
1
/ Hed#" !  and / =t
M m H

fora >0and anyi =1,...,n— 1, as well as improvements of Chen’s and
Ros’ inequalities, in the convex case.

Next we introduce the notation and main concepts that will be needed throughout
the paper, as well as our main results.

2 Notation and previous results

Let 73" be the set of all convex bodies, i.e., compact convex sets with non-empty
interior, inR" containing the origi®. A convex bodyK € %" is said to be of class

C? if its boundary hypersurfacedK is a regular submanifold dR", in the sense

of differential geometry, which is twice continuously differentiable. Moreover, we
say thatK is of classC2 if K is of classC2 and the Gauss mag : bdK — S"-1,
mapping a boundary point € bdK to the (unique) normal vector &f atx, is a
diffeomorphism. Thus, in this case, we can considemthel principal curvatures
ki,...,ko—1 of bdK and, as usual in the literature, we will denote by

Hi:Tll kj1~~kji, i=1,...,n—1,
( i ) 1I<jp<-<ji<n—1

thei-th mean curvaturesettingHp = 1. In particular,H; = H is the classicatnean
curvatureandH,_1 = K is theGauss-Kronecker curvature

The pursued estimates for the integrals of powértdmean curvatures will be
given in terms of the so-called quermafiintegrals of the convex bodies, which are
special geometric measures associated to the set. We define them next.

In [13], Steiner proved that givel € 73" and a non-negative real numbey
the volume of the Minkowski sum (vectorial additio)+ A B, is expressed as a
polynomial of degre@ in A, namely,

|K+/\Bn|:ii(?>wi(K)Ai,

which is called the (classica8teiner formulaof K. The coefficientdV;(K) are the
quermalintegralsf K, and they are a special case of the more general definad
volumedor which we refer to [12, Section 5.1]. In particulp(K) = |K| (the area
A(K) in the planar casehW1(K) = S(K) is the surface area (the perimetgK) in
the plane) an@W,,_1/|By| is the mean width oK. MoreoverWy(K) = |By|.
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In order to state the main results of the paper, we need an additional definition.
Theouter radiusand theinner radiusof K ¢ %" are defined as the quantities

R(K) = min{R>0:K C RB,} = max{ ||| : x € bdK},
1K) = max{r > 0:rB, C K} =min{||x|| : x € bdK }.

Clearly, the valuR(K) —T(K) is not translation invariant, but sinéeis compact,
there exists a (unique) poiog € K such that

R(K —ck) — (K —ck) =min{R(K —t) —T(K —t) :t e K}

(see [2]). The pointyk is thecenter of the minimal ring.e., the uniquely determined
ring (closed set consisting of all points between two concentric balls) with minimal
difference of radii containin@pdK. The valuew,(K) := R(K —cx) — (K —ck) is
called thewidth of the minimal ringpf K.

Fig. 1 The minimal ring of a
convex body. We observe that
the inner and the outer radii
of K — ¢k do not necessarily
coincide with the classical
inradius and circumradius of
the set, respectively.

SincerB, C K andK C RBy, the in- and outer radii and the guermalintegrals
relate in the following way:

T(K)Wiy1(K) < Wi(K) < R(K)Wi;1(K), 4)

i =0,...,n—1, which is a direct consequence of the monotonicity of the mixed
volumes (cf. e.g. [12, p. 282)).

For the statement of the results, and in order to shorten the statements and proofs,
we introduce the following notation. Far< j <n—land0<k<n-1, let

W1 (K)Wj(K) = Wo(K)W+1(K)

if K#£1B, forall r >0,
Nik= Wiy 1(K)2wa(K) #Bn
0 if K=rB.

The non-negativity of the valueg  is a direct consequence of the inequalities
Wi (K)Wj(K) > Wi_1(K)Wj1(K), 1<i<j<n-1, (5)

particular cases of the Aleksandrov-Fenchel inequality (see e.g. [12, Section 7.3]).
From now on, for the sake of brevity, we will wrid®; = W;(K), i=0,...,n, and
analogously for all other functionals, if the distinction of the body is not needed.
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2.1 Some previous results

In [1] the above mentioned problem of obtaining lower estimates for the integral
of poweredi-th mean curvatures was studied. Among others, the following more
general theorem was proved.

Theorem 1.LetK € 7" be of clas<C2. Then, for any convex functidh: | — R,
I € R where all the quantities are defined, andia# 0,...,n—1,

T+ f]i,o) +F (le7+11 B ni*o)
. ,

F L‘f'rIiAi +F (g —Nij
Lo (Fo ) e s (st + ) +F (s~ m)
bdK H; 2

Equality holds in both inequalities K = B, (up to dilations).

F
/ (F oH) d™t > nw;y (
bdK

Indeed, a slightly more general result was obtained (see [1, Theorem 3.2)).

Then, applying Theorem 1 to the convex functidrg) = x?** or F(x) = 1/x9,
o > 0, two different results can be obtained, providing different bounds for the
same integrals. These bounds can be compared, and thus the following theorem is
obtained in the spirit of thenain problem:

Theorem 2.LetK € 7" be of cIasS:?r. Then, foranya >0and alli=0,...,n—1,

i+1 + i+1
a
(W1+Wipanii)”™ (W1 —Wiganij

/ H_a+ld%n—l > D
bdk -2

wo+l woa+l ]
)C{

/ 1 n-1< N witt n witt
bak H T2 (Wigr+Winig)®  (Wisa—Wanio)? |
Equality holds in both inequalities K = By, (up to dilations).

In particular, improvements of Chen’s and Ros’ estimates for convex hypersurfa-
ces can be obtained by just taking 1 and, respectivelyy =1ora =n—2:

Corollary 1. LetK € %3 be of clas€C2. Then,

n—1 n—1
/ H e > 2 e 2T W2 nZ] ’
bdK 2 | (W1 +Wany1) (W1—W2n11)
1 W2W
bak H W35 —Wini,

Equality holds in all inequalities iK = B, (up to dilations).
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Indeed, on the one hand,

W32wW W2wW w2
net2 >n—172 —n=l > nwo = nK|
W5 —Winio W5 Wa
because of the Aleksandrov-Fenchel inequality (5) ferj = 1. On the other hand,
since the functiorl/x"~2 is convex, then

n wjt wjt n2wjy !
2 2T n-2|= o w2 = N[Bxl,
(W1+Wan11) (W1—W2n11) 1
where the last inequality follows from the known relations
W > W Iwl T for 0<i<j<k<n, (6)

which are also consequences of the Aleksandrov-Fenchel inequality (see e.g. [12,
(7.66)]). Hence, Corollary 1 improves (2) and (3) in the convex case.

We notice that the Theorem 2 provides lower estimates for the integadinafst
any power of thé-th mean curvatures: bounds ffy, H? d#"~1 are giverfor any
A € (—,0]U[1,4); the rang€0, 1) is still an open question.

In this work we consider the opposite case, i.e., we will look for upper bounds
for the integrals of poweredth mean curvatures.

3 A probabilistic type result

All the results will be consequences of a very general proposition for functions defi-
ned on a general probability space. In [1, Proposition 1.4], this result was proved for
a convex functior, whereas now we are interested in the concave case. Although
this one can be obtained from the convex case just takingfor completeness, we
include here the proof.

As usual in the literature,

Ep= | p(w)dP(w)

will denote the expectation @f, Cov(p, h) = Ehp — EhEp the covariance gb and
h, and|| - | the sup-norm, i.e}| f ||« = sup{|f(w)|: w € Q}.

Proposition 1. Let (Q,P) be a probability space such that, for aAyC Q and any
0< p<P(A), there exist® C Awith P(B) = p. Letp,h: Q — R, withp € L}(Q)
andh € L*(Q). Then, for any concave functidh: | — R, | C R where all the
expressions below are defined, we have

Cov(p,h) __ Cov(p,h)
F(Ep+ fhE) +F (B0 - 45T
5 )

E(Fop) <
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Proof. Without loss of generality we assume ti@av(p, h) < 0; otherwise we just
changeh by —h.
Let mbe a median op, i.e., a value for which both
PH{weQ:p(w)>m})>1/2 and P({weQ:p(w)<m})>1/2
and letQ; C Q andQ; = Q\ Q1 be such thaP(Q;) =P(Q,) =1/2and

{weQ:p(w)>m} C Q1 C{weQ:p(w)>m},
{weQ p(w)<m} C 2 C{weQ:p(w) <m}.

We notice that suck2; always exists. Indeed, by the definition of median,

P({we Q:p(w) < m}) > %,

and so
P({weQ:p( >m}) %
Consequently, since
P({weQ : p(w) 2m}>
_P({weQ p(w >m})+IP’<{weQ p(w })

we have that
P({weQ:p( m})zl ({weQ p(w >m})20.

Then, by our assumptions ¢f2,P), there exists a subsBtC {w e Q : p(w) =m}
with P(B) = 1/2—P{w € Q : p(w) > m} and we can take

O ={weQ:p(w)>m}UB.
Now, let
p1= Z/le(w)dIP’(w) and py= Z/QZp(w) dP(w).
Sincep; + p2 = 2Ep, we can write
pr=Ep+b and p,=Ep-b (7)
for someb > 0. First, we are going to prove that

|Cov(p,h)|

T <D (8)
[h—Eh]e
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Indeed, since
—||h—Eh||e <Eh—h(w) < ||h—Eh||e

for everyw € Q and sincep(w) > mif w € Q; andp(w) < mif w € Qy, then we
have that

. (En=(e) (p(e) ~m) dP() < 5N~ ENlu(ps —m

and L
L, (En (@) (p(e) ~m) dB(@) < -5 |~ (p2 ~ )

Adding both integrals and using (7) we get
E((Eh—h)(p—m)) = /Q (Eh—h(w)) (p(w) — m) dP(w)
1
< 5lIh=Ehlls(p1 - p2) = [|n—Ehjb,

and since
E((Eh—h)(p —m)) = EhEp —Ehp = —Cov(p, h),

we obtain the required bound (8).
Now, sinceF is concave, Jensen’s inequality (see e.g. [12, p. 20]) yields

Flp) =2 (Fop)@dP(w) and F(pz) =2 [ (Fop)()dP(w)
which, together with (7) implies that

E(Fop) = | (Fop)(@)dP(a) + /. (Fop)(®)d?(e)
< Flp1) +F(p2) _ F(Ep+b)+F(Ep—b)

- 2 2

Finally, since a concave functidn satisfies that for anx € R and any0<a<b
the average of the numbe{§ (x+a),F (x—a)} is not smaller than the average of
{F(x+b),F(x—b)}, taking into account (8) we get

_ F(Ep+ Soven ) | p(gp . Covoh

E(Fop) < F(Ep+b)+F(Ep—b) - ( Th IEhHw) ( Th IEhHw> ’
2 2

which conclude the proof. O

If the probability measure can be expressed by means of a density with respect
to another (not necessarily a probability) measureve immediately obtain the
following result.
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Proposition 2. Let (Q, u) be a measure space and gt Q — R be a positive
integrable function with/, gdu = 1, and such that for anyA C Q and any0 <
p < [Agdy, there exist8 C Awith [ggdu = p. Letp,h: Q — R be integrable
functions withh € L*(Q). Then, for any concave functiéh: | — R, | C R where
all the expressions below are defined, we have

/Q(Fop)gdu S F (/QPQdH-H’I(P,h,g)) —2H: (/ngdy—n(p’h7g)>7

where Jo PhgAH — (o PYTH) (f hGCt)
h.g) — JaPhadi = (Jo padh) (Jg hgd
n(e-h9) Ih— o hodu].,

4 Upper bounds for integrals of poweredi-th mean curvatures

We denote by (u) = sup (x,u), u€ R", the support function of (see e.g. [12,
Section 1.7]), and let

ak (X) = hk (Vk (X)) = (X, vk (X)), X € bdK.

Minkowskian integral formulae (see e.qg. [12, pp. 296—297]) state that

1 1
W= [ Hedrt = geden 9)
N Jbdk N Jbdk

fori =1,...,n. We observe that the volume

1 1
K| = Wo = f/ qKHod%””‘lzf/ ok d" L,
N Jbdk N JbdkK

This section is devoted to look for upper bounds for the integrals of some po-
wers of thei-th mean curvatures. First we show the following general result for an
arbitrary concave function.

Theorem 3.LetK € %" be of classC2. For any concave functiof : | — R,
I C R where all the quantities are defined, andia# 0,...,n—1,

W+ ni,o) +F (V\\;{,jl - "IiAo)
2 )

/t;dK(F oH)d#" 1 < nwy ( (10)

2
1
Equality holds in both inequalities K = By, (up to dilations).

F(wg +0i) +F (wiy —mi
[ (Foiy ) paen <oy (s om) <P (o)
bdK i
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Proof. In order to get (10), we consider the probability spéoeK, 7#"1/(nW1))
and apply Proposition 1 to the functiops= H; andh = gk. Then, using the identi-
tiesin (9), we get

_Wi+1 _WO
Ep— W]_ ) ]Eh_ Wl
and WiW; — WoW
1— VVQ 1
Cov(p,h) = Ehp — EREp = —. W A
1
Moreover,
B Wo | _ R Wo Wo —
||h]Eh|oosup{ Ok (X) W, X€E bdK}max{R W1 Wi f}a

and since the functionald;,W; are translation invariant, the smallest possible up-
per bound for 4 (F o Hi) d2#"~1 will be obtained for the translation ¢ such
that the above maximum is minimal. Therefore, we can write

(e 1) (-0

/ (FoH)doz"t < nwy
bdK

2 7
with
5— Cov(p,h) _ WiW1 —WoWi 1
IIh—Eh||e 0 = Wo Wo _ '
ngypmax R(K —X) Wo W, r(K —x)

Now we observe that, by (4),

ﬁ(K—x)—% <R(K—x)—Ff(K—x), and

%—RK—X) < R(K —x) = (K =),

and sincer- is a concave function, we can replat®y a smaller number, namely,

WiW1 —WoWi 1 _ WiWi3 —WoeWi
02 o = = 2 =
ng(rélp{R(fo)fr(fo)} W20,

i,0-

Altogether we get (10).

Inequality (11) is obtained analogously, but now as a consequence of Pro-
position 2 forp = 1/H;, h = gk and g = Hi/(nWi11); we natice that, by (9),
Joak 9d" 1 =1,

Finally, equality trivially holds forKk = B, (up to dilations) just noticing that
Wi(Bn) = |Bn| foralli=0,...,n. O

In order to get bounds for the integral of some powers of the mean curvatures,
we may apply Theorem 3 to the concave functigix) = x? for0< a < 1.
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Theorem 4.LetK € 7" be of clas<C2. Then, for alli =0,...,n— 1, the following
inequalities hold:

e f0<a<1/2,
e HId#" < gWﬁa [(Wi+1+W1 Mio)" + (Wis1— Wy ni,o)a] (12)
e If12<a<1,
K Hed" < gwia+1 {(W1+Wi+1 fli,i)lia + (W1 —Wisq ni,i)lia} . (13)

Equality holds in both inequalities K = By, (up to dilations).

Proof. Let0 < a < 1. On the one hand, takirg(x) = x* in (10) we directly get
- Hodz"t < gWi_a {(WiJrl +Winio)” + (Wis1— Wi Ui,o)a} - (14
On the other hand, (11) applied Egx) = x“ yields
/bdK Hi-%d"t < gWilif [(Wl FWi1nii)® + (W —Wigg fh,i)a}
or, equivalently,
» HId#" < gwﬂ-l [(Wl F Wi i) (We— Wigg ’Ti,i)l_a} . (15)

Therefore, we just have to compare both bounds, depending on the vatudrof
order to do it, we denote by

Wi _ Wiy WiWi —WoWiig

X= —0n; =
Wi+1rll"O Wy i WiWi 100,

Using (4) and (5) we get that

0 < WiWi — WoWit1 < WiWis1 (R(K —ck) —T(K —ck)) = W1 Wi 10,

and thereforeQ < x < 1. Using this notation, the upper bounds in (14) and (15) can
be written, respectively, as

WITWE [(1+X)% + (1-%)?] =: (bD),
W oW (1419 + (1% ] =: (b2).

Then (bl) is, say, smaller than (b2), if and only if

(14X +(1-x < (A+xr 24+ (1-x)19, (16)
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and it clearly holds wheir < 1/2. This shows (12). Finally, (b1} (b2) is equi-
valent to have the reverse inequality in (16), which holds if 1/2. It states (13)
concludes the proof of the theorem. O

It may also have interest to obtain an estimate for the entropy aftinenean
curvatures, which is defined by

- / HilogH; d.2" 1.
bdK

We do it in the following result.

Corollary 2. LetK € ;" be of clasC?. Forall i =0,...,n—1,

. n W2
— | HilogHid#" 1< —W,1log| —+ —n3 |.
/bdK ilogh < 5Wist g <Wi2+1 N

Equality holds ifk = B, (up to dilations).

Proof. It is a direct consequence of inequality (11), just considering the concave
functionF (x) = logx:

1 n W2
— [ HilogH, d%ﬂ”‘lz/ Hilog > d#" 1 < "Wy slog [ 2 —n2 | .0
/bdK i10gH; el gHi =3 i+1109 Wi2+1 ni

4.1 On the radii of curvature of convex bodies

If K € %3 is of classC2, we can consider the— 1 principal radii of curvature
ri,...,r-1 of K atu e S"1, i.e., the eigenvalues of the reverse Weingarten map
(see e.g. [12, p. 116] for a detailed explanation). Theni fod,... ., n— 1,

1
S=7 1 Fig - Tii
(ni )1Sjl<“‘z<ji5n*1 I
is thei-th normalized elementary symmetric function of the principal radii of cur-
vature, withsg = 1. We observe that, properly ordering the indices,

1 .
ri(u):m, i=1...,n—1,

wherexk (u) € bdK is the unique point of the boundary at whichis the outer
normal vector. Moreover, for all € S"* andx € bdK we have the relations
_ Hnoia _ Sica

s(u) = s (X (u)) and Hi(x) = 5 (v (¥)),
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and so there exist also Minkowskian integral formulae for df® (see e.g. [12,
pp. 296-297]): forall =0,...,n—1,

W= [ sdrm = [ s adt (7)
n.J/sn-1 nJsn-1

In [1] the analogous result to Theorem 1 for the so-cal#d(normalized) elemen-

tary symmetric function of the principal radii of curvature was obtained. In a similar

way we can also get the corresponding result for a concave function, which will

provide upper bounds for the integrals of some powers o§the

Theorem 5.Let K € 73" be of classC2. For any concave functiof : 1 — R,
I C R where all the quantities are defined, andia# 0,...,n—1,

F (% +rﬁl) +F (% —ri.l)
5 ;

[, (Fos)ar™t <ngy

|Bnl

n 1Bl _ o
/ (F o ;) S W < NWp_j i (ani - nl,|+l) :F (W”*i n|’|+l> 7
sh—-1

where now, forang < j,k<n,

Wn—jWn—lfwn—j—l|Bn|

'TJ'J( = W%—kﬂwa
0 if K=rBp.

if K#rBy forall r >0,

Equality holds in both inequalities K = B, (up to dilations).

Proof. In order to get the first inequality we apply Proposition 1 to the probability
space(S"1,.#"1/(n|Bn|)) and to the functionp = s andh = hk. Then, using
the Minkowski integral formula (17), we get

Whi Wh-1
Ep=-—-"' Eh=-—1=
= Bl Bl
and Wh_i_1|Bn| — Wn_iW
Cow ,h _ n—i—1|Bn| — VVn—j nfl.
(p.,h) B
In addition,
Wp_
|h—Eh||e = sup{ hi (u) — \ET |1 :ueS”l}
n

— anl anl —}
= max{ R— , I,
{ Bn[ " |Bnl

and since the functionatg, W; are translation invariant, the smallest possible upper
bound for [, 4« (F os) d#"~1 will be obtained for the translation &f such that the
above maximum is minimal.
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Moreover, using (4) we have

Cov(p,h) . Wh_i—1|Bn| — Wn_iWn_1
|h—Ehlle 1, . — Wn1 Wh1 -
|Bn| minmax R(K —Xx) B’ [Bnl r(K—x)

ani—1|Bn‘ —Wn_iWn-1 o Vani—1|Bn| —Wn_iWn_1 _ ’7 N
=—Ni1.

- 2mi %) — 1K — B.|2
|Bn| I;(T;II?{R(K X) —1(K—x) } |Bn|?tn

Altogether and the concavity & show the first inequality.

Second inequality is obtained analogously, but now as a consequence of Pro-
position 2 forp = 1/s, h=hx andg = s/(nW,_j); we notice that, by (17),
Jsn-19d#"1 = 1. The equality case is trivial. i

If we replaceF (x) by the concave functior”, 0 < a < 1, we get the correspon-
ding result to Theorem 4 for the's.

Theorem 6.LetK € 7" be of clas<C2. Then, for alli = 0,...,n— 1, the following
inequalities hold:

e f0O<a<1/2
g n RN _\a
/Snilsiadc%pnil < §|Bn|lia (Wn—i + ‘Bn|ni,1> + (Wn—i - |Bn|’7i,1) .

° |f1/2§or§1,

./Snfls" do"t < gWﬁ_i [(IBn\ FWo i Miiga) "+ (1Ba] = Wa mi+1)lfa} :

Equality holds in both inequalities K = By, (up to dilations).

5 Another consequence: the radial function and the dual
guermaliintegrals

In this section we will apply Proposition 1 in a difference setting: instead of working
with convex bodies we will consider the so-called starshaped sets. A non-empty set
Sc R"is calledstarshapedwith respect to the origin) if the line segmédftx] C S

for all x € S For a compact starshaped Betthe radial function is defined as

pk(u)=max{A >0:AuecK}, ueR™{0}.

Clearly, pk (u)u € bdK. We will denote by the family of all compact starshaped
sets inR" having the origin as an interior point.

Closely related to the radial function are dual quermaf3integrals (and dual mixed
volumes), which were introduced by Lutwak in [9]; they were the starting point for
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the development of the nowadays known as dual Brunn-Minkowski theory (see e.g.
[12, Section 9.3]). FoK € ./ andi = 0,...,n, thedual quermaRintegral of order

n—i, Wn_i(K), is defined by
Wi (K) = 1 / pk doz" L, (18)
n.Jjsn-1

The functionavNVn,i is non-negative, monotonous and homogeneous of de(gee
e.g. [7, Section A.7]), although it is not translation invariant. In particular, the use of
spherical coordinates immediately yieM&(K) = |K|, whereadVy(K) = |By| and
2Wn_1(K)/|Bn| is the average length of chords ifthrough the origin. Moreover,
if K e ¢ thenW;(K) < W;(K) foralli =0,...,n (see [9]).

ForK e .7, its in- and outer radiif(K), R(K), are defined analogously to the
convex case, and from the already mentioned monotonicity of the dual quermaRin-
tegrals we get (cf. (4))

T(K)™ T Wi k(K) < Wi(K) < R™(K) W k(K). (19)

We observe that definition (18) can be extended to any real number, and thus, in
contrast to the case of the classical quermaRintegrals, dual quermaRintegrals can be
defined for any € R. Now, thedual Aleksandrov-Fenchel inequalitiésee e.g. [9,
Theorem 2]) read (cf. (6))

Wi (K)*T < Wi (KR IW(K)ITT 0 for i < j <k (20)
In [1], a slightly stronger version of the following result was obtained. Again, for
the sake of brevity, we will writ&V; = W;(K).

Theorem 7.LetK € .7 For any convex functioR : | — R, | C R where all the
quantities are defined, and alk= 0,. .. n,

% + ﬁi,o) +F (% _ ﬁi,o)
2 )
Bl | 7 . Bal =
/Sn—l (F o F:;()pk dsp1 > nV~Vn,i F (anfi +’7|,|) -52-F (V~Vn7i rll,l) |

where now, foranp < j,k<n,

(21)

/Snil (Fopk)d#"t >n|By| (

F o KBl =W W,
k== e rE——

Wiy (RMT =)
Nnjx=0 if K= rBp for somer > 0.

if K=#£rBp, r >0,

Equality holds in both inequalities K = By, (up to dilations).
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We observe that the relatiopK||B| > Wh_ JW,, a consequence of the dual
Aleksandrov-Fenchel inequality (20), ensures that > 0.

Following the same argument as in the proof of the above theorem, we obtain the
corresponding result for the case of a concave function.

Theorem 8.LetK € .74 For any concave functiof : | — R, | C R where all the
quantities are defined, and al= 0, ... n,

F(‘B‘ +n|0)+F(W_rI|O)
> )

/ (Fo 1)p 4"t < W (v‘vnn‘,Jr” ) (%_ﬁi,i).
sn-1 p

(22)

/Sn_l (Fopk)ds"t <n|By|

2
Equality holds in both inequalities K = By, (up to dilations).

Proof. In order to prove (22) we apply Proposition 1 to the probability space
(S"1, o 1/(n|Bn|)) and the functionp = pj andh = pR~". Then, using (18),

Ep =Wn_i/|Bnl, | and

K] [Bn| — Wi Wi

Cov(p,h) = B

Moreover, sincgok (U)u € bdK, the relations (19) yield

‘ue s 1}

_ max{am W W m} LR

Px(u)" —

h—Eh|l = su
Ih—Eh| p{ B

[Bn| " [Bn|

Altogether and the concavity &f shows the first inequality.
Second inequality is obtalned analogously, but now as a consequence of Proposi-
tion 2 forp =1/pk, h=pt~' andg= pK/(an i)- The equality case is trivial. O

We observe that since (18) can be defined for aayR, taking F (x) = x¥ or
F(x) = 1/x9 for suitable powersy > 0, new inequalities relating the dual quer-
malfintegrals with the in- and outer radii can be obtained. Indeed, even Theorems 7
and 8 hold true for all € R, just properly defining the valuep .

For instance, taking (x) = x? in (21), then

[, Fopgarmie [ pBarmt—ni,
foranyi =0,...,n, and hence we get

Buf? (1BnlWi-ai — W3, ) (R —7"1)° > (IK|[B| W1 Wh)?
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with equality for the ball.
If we consider now the concave functiéri{x) = \/x and apply (22), we obtain

(IK|Bn| — Wn_iW;)?
(Rnfi _Fki) !

2W3 i/ < [Bn|Wn_i + | [Ba[2W3_; —

here we are assuming that# rBy,, otherwise we get a trivial identity.
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